
How we run a 99,5% uptime SDI

using Geoserver

Roel Huybrechts, Niels Charlier, Timothy De Bock et. al.



Databank Ondergrond Vlaanderen

soilgeology

geotechnics groundwater
mineral

resources

geothermics

FLANDERS

OPEN DATA

INSPIRE



• 1602 layers
• served with Geoserver using OGC standards

• 1602 WMS layers

• 732 WFS layers (i.e. vector data)

• 870 WCS layers (i.e. raster data)

• 1744 metadatarecords
• served with Geonetwork using CSW + ISO standards

Data?



Users

http://www.dov.vlaanderen.be/verkenner
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2,5 million hits per week



Most of the time, it works



So, how?

• Multiple nodes
• All our Geoserver machines are clusters of 2 or 4 nodes

• Multiple instances / environments:
• Separated work environment and publication environment

• We have everything three times (dev, qa, production)

• Yes, this is a lot of machines. (around 25x3 servers)



Geoserver, batteries included

• Geoserver
• WMS, WMTS, WFS, WCS, CSW

• Extensions
• INSPIRE

• Community modules
• JDBCConfig (improved!)
• JDBCStore (improved!)
• GWC S3
• S3 Geotiff
• Taskmanager (new!)
• Metadata (new!)
• CSW ISO



Release schedule

• Upstream Geoserver releases roughly every 6 months
• Now at 2.16.0

• We have a custom version, following our own release needs
• Now at 2.15.0-dov-4.3.0
• https://github.com/DOV-Vlaanderen/geoserver/tree/2.15.0-dov-4.x

• Why?
• To get improvements and fixes of our own community modules into production faster
• To be able to fix important Geoserver issues in production faster

• All our improvements and fixes are pushed upstream and are included in the
next upstream release

https://github.com/DOV-Vlaanderen/geoserver/tree/2.15.0-dov-4.x


Development workflow

• We have continuous integration using Bamboo

• All changes are deployed in dev and tested by a user

• We release when new stories are finished and/or all urgent bugs are fixed

• Release is deployed in QA and tested again

• When all is well we deploy in production
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Not so great idea
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Our Geoserver clusters
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Our Geoserver clusters
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Lessons learned

• Database connections
• Don’t use database parameters in store config directly

• Use PostGIS JNDI and define connection pools in Tomcat

• Hazelcast cache invalidation can be tricky
• General rule is: it is not cluster-safe unless we have fixed it

• Transparent GWC caching is very powerful
• WMS calls use WMTS tiles if they are available

• Allows to cache a layer without clientside changes!



Geoserver work environment
with Taskmanager

Work database

Geoserver publication environment

Publication database

Our setup: basics
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Taskmanager: integrated ETL



Geoserver Task Manager: concepts

Template: reusable blueprint for new configurations, contains
predefines tasks, attributes and batches

Batch: series of tasks that can be executed manually or 
automatically, is transactional

Configuration: group of tasks, attributes and batches 

Task: one specific and atomic action

Attribute: variable with a value, can be reused in different 
tasks within the configuration



…

Taskmanager: integrated ETL



Taskmanager: integrated ETL



• It creates stores and layers automatically
• From database table

• Or by uploading a raster file

• This means new layers have a configuration by design
• allows publication on a remote Geoserver with a single click

• Define your dataflows once and run them automatically every night

• Allows work and publication environments to be entirely separate
• While keeping it easy for users to publish their new versions with a single click

Taskmanager advantages



Metadata: saved with layer



Metadata: INSPIRE compliant



Metadata: CSW built-in



Lessons learned

• Data and metadata are meant to be kept close together
• Edit at the same time

• Publish at the same time

• Don’t duplicate information
• Custom metadata fields are synced to native fields on save

• F.ex. metadata identificator, keywords, etc.

• Metadata templates are powerful
• Most of us don’t like to fill in metadata forms

• Templates can be combined easily -> don’t duplicate information



More information

• Github: https://github.com/DOV-Vlaanderen/geoserver

• Documentation: https://docs.geoserver.org/

• DOV website: https://www.dov.vlaanderen.be/page/geoserver-task-
manager

• Don’t hesitate to contact me or DOV if you have any questions!

https://github.com/DOV-Vlaanderen/geoserver
https://docs.geoserver.org/
https://www.dov.vlaanderen.be/page/geoserver-task-manager

