
How we run a 99,5% uptime SDI

using Geoserver

Roel Huybrechts, Niels Charlier, Timothy De Bock et. al.



Databank Ondergrond Vlaanderen

soilgeology

geotechnics groundwater
mineral

resources

geothermics

FLANDERS

OPEN DATA

INSPIRE



• 1602 layers
• served with Geoserver using OGC standards

• 1602 WMS layers

• 732 WFS layers (i.e. vector data)

• 870 WCS layers (i.e. raster data)

• 1744 metadatarecords
• served with Geonetwork using CSW + ISO standards

Data?



Users

http://www.dov.vlaanderen.be/verkenner



Users



Users



Users



Users



Users



2,5 million hits per week



Most of the time, it works



So, how?

• Multiple nodes
• All our Geoserver machines are clusters of 2 or 4 nodes

• Multiple instances / environments:
• Separated work environment and publication environment

• We have everything three times (dev, qa, production)

• Yes, this is a lot of machines. (around 25x3 servers)



Geoserver, batteries included

• Geoserver
• WMS, WMTS, WFS, WCS, CSW

• Extensions
• INSPIRE

• Community modules
• JDBCConfig (improved!)
• JDBCStore (improved!)
• GWC S3
• S3 Geotiff
• Taskmanager (new!)
• Metadata (new!)
• CSW ISO



Release schedule

• Upstream Geoserver releases roughly every 6 months
• Now at 2.16.0

• We have a custom version, following our own release needs
• Now at 2.15.0-dov-4.3.0
• https://github.com/DOV-Vlaanderen/geoserver/tree/2.15.0-dov-4.x

• Why?
• To get improvements and fixes of our own community modules into production faster
• To be able to fix important Geoserver issues in production faster

• All our improvements and fixes are pushed upstream and are included in the
next upstream release

https://github.com/DOV-Vlaanderen/geoserver/tree/2.15.0-dov-4.x


Development workflow

• We have continuous integration using Bamboo

• All changes are deployed in dev and tested by a user

• We release when new stories are finished and/or all urgent bugs are fixed

• Release is deployed in QA and tested again

• When all is well we deploy in production



Standard Geoserver installation

Jetty

HTTP

Geoserver

Data 

directory
Database 

(map data)

SHP Geotiff
Config

(XML)



Not so great idea

Data 

directory

Database 

(map data)

Geotiff
Config

(XML)

Tomcat

HTTP

Geoserver

Tomcat

Geoserver

Tomcat

Geoserver

Tomcat

Geoserver

Reverse proxy

Loadbalancer

Data 

directory

Geotiff
Config

(XML)

Data 

directory

Geotiff
Config

(XML)

Data 

directory

Geotiff
Config

(XML)

HTTP



Our Geoserver clusters

Tomcat

HTTP

Geoserver

Database 

(map data)
Database 

(config)

S3 file storage 

(raster data)

Tomcat

Geoserver

Tomcat

Geoserver

Tomcat

Geoserver

Reverse proxy

Loadbalancer

S3 file storage 

(geowebcache)



Our Geoserver clusters

Tomcat

HTTP

Geoserver

Database 

(map data)
Database 

(config)

S3 file storage 

(raster data)

Tomcat

Geoserver

Tomcat

Geoserver

Tomcat

Geoserver

Reverse proxy

Loadbalancer

S3 file storage 

(geowebcache)



Lessons learned

• Database connections
• Don’t use database parameters in store config directly

• Use PostGIS JNDI and define connection pools in Tomcat

• Hazelcast cache invalidation can be tricky
• General rule is: it is not cluster-safe unless we have fixed it

• Transparent GWC caching is very powerful
• WMS calls use WMTS tiles if they are available

• Allows to cache a layer without clientside changes!



Geoserver work environment
with Taskmanager

Work database

Geoserver publication environment

Publication database

Our setup: basics



work
publish

app

Copy table Copy table

Remote db
publication

Create view

work

Publiceren van boringgegevens

Taskmanager: integrated ETL



Geoserver Task Manager: concepts

Template: reusable blueprint for new configurations, contains
predefines tasks, attributes and batches

Batch: series of tasks that can be executed manually or 
automatically, is transactional

Configuration: group of tasks, attributes and batches 

Task: one specific and atomic action

Attribute: variable with a value, can be reused in different 
tasks within the configuration



…

Taskmanager: integrated ETL



Taskmanager: integrated ETL



• It creates stores and layers automatically
• From database table

• Or by uploading a raster file

• This means new layers have a configuration by design
• allows publication on a remote Geoserver with a single click

• Define your dataflows once and run them automatically every night

• Allows work and publication environments to be entirely separate
• While keeping it easy for users to publish their new versions with a single click

Taskmanager advantages



Metadata: saved with layer



Metadata: INSPIRE compliant



Metadata: CSW built-in



Lessons learned

• Data and metadata are meant to be kept close together
• Edit at the same time

• Publish at the same time

• Don’t duplicate information
• Custom metadata fields are synced to native fields on save

• F.ex. metadata identificator, keywords, etc.

• Metadata templates are powerful
• Most of us don’t like to fill in metadata forms

• Templates can be combined easily -> don’t duplicate information



More information

• Github: https://github.com/DOV-Vlaanderen/geoserver

• Documentation: https://docs.geoserver.org/

• DOV website: https://www.dov.vlaanderen.be/page/geoserver-task-
manager

• Don’t hesitate to contact me or DOV if you have any questions!

https://github.com/DOV-Vlaanderen/geoserver
https://docs.geoserver.org/
https://www.dov.vlaanderen.be/page/geoserver-task-manager

